Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock flow down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk density comparable to those of rock avalanche and other types of landslides (roughly 2000 kilograms per cubic meter), but owing to widespread sediment liquefaction caused by high pore pressure, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters (i.e., 1 cubic kilometer). As a result of their high sediment concentrations and mobility, debris flows can be very destructive.
Notable debris-flow disasters of the twentieth century involved more than 20,000 Armero tragedy, in 1985 and tens of thousands in Vargas tragedy, Venezuela, in 1999.
Debris flows can be triggered by intense rainfall or snowmelt, by dam-break or glacial outburst floods, or by landsliding that may or may not be associated with intense rain or earthquakes. In all cases the chief conditions required for debris flow initiation include the presence of slopes steeper than about 25 degrees, the availability of abundant loose sediment, soil, or weathered rock, and sufficient water to bring this loose material to a state of almost complete saturation (with all the pore space filled). Debris flows can be more frequent following forest and brush fires, as experience in southern California demonstrates. They pose a significant hazard in many steep, mountainous areas, and have received particular attention in Japan, China, Taiwan, USA, Canada, New Zealand, the Philippines, the European Alps, Russia, and Kazakhstan. In Japan a large debris flow or landslide is called yamatsunami (山津波), literally mountain tsunami.
Debris flows are accelerated downhill by gravity and tend to follow steep mountain channels that debouche onto or . The front, or 'head' of a debris-flow surge often contains an abundance of coarse material such as boulders and logs that impart a great deal of friction. Trailing behind the high-friction flow head is a lower-friction, mostly liquefied flow body that contains a higher percentage of sand, silt and clay. These fine sediments help retain high pore-fluid pressures that enhance debris-flow mobility. In some cases the flow body is followed by a more watery tail that transitions into a hyperconcentrated stream flow. Debris flows tend to move in a series of pulses, or discrete surges, wherein each pulse or surge has a distinctive head, body and tail.
Debris-flow deposits are readily recognizable in the field. They make up significant percentages of many alluvial fans and along steep mountain fronts. Fully exposed deposits commonly have lobate forms with boulder-rich snouts, and the lateral margins of debris-flow deposits and paths are commonly marked by the presence of boulder-rich lateral levees. These natural levees form when relatively mobile, liquefied, fine-grained debris in the body of debris flows shoulders aside coarse, high-friction debris that collects in debris-flow heads as a consequence of grain-size segregation (a familiar phenomenon in granular mechanics). Lateral levees can confine the paths of ensuing debris flows, and the presence of older levees provides some idea of the magnitudes of previous debris flows in a particular area. Through dating of trees growing on such deposits, the approximate frequency of destructive debris flows can be estimated. This is important information for land development in areas where debris flows are common. Ancient debris-flow deposits that are exposed only in are more difficult to recognize, but are commonly typified by juxtaposition of grains with greatly differing shapes and sizes. This poor sorting of sediment grains distinguishes debris-flow deposits from most water-laid sediments.
Calibrating and validating such sophisticated models require well-documented data from field surveys or minute laboratory experiments.
In real two-phase (debris) mass flows there exists a strong coupling between the solid and the fluid momentum transfer, where the solid's normal stress is reduced by buoyancy, which in turn diminishes the resistance, enhances the pressure gradient, and reduces the drag on the solid component. Buoyancy is an important aspect of two-phase debris flow, because it enhances flow mobility (longer travel distances) by reducing the frictional resistance in the mixture. Buoyancy is present as long as there is fluid in the mixture. It reduces the solid normal stress, solid lateral normal stresses, and the basal shear stress (thus, frictional resistance) by a factor (), where is the density ratio between the fluid and the solid phases. The effect is substantial when the density ratio () is large (e.g., in the natural debris flow).
If the flow is neutrally buoyant, i.e., , (see, e.g., Bagnold, 1954) the debris mass is fluidized and moves longer travel distances. This can happen in highly viscosity natural debris flows. For neutrally buoyant flows, Coulomb friction disappears, the lateral solid pressure gradient vanishes, the drag coefficient is zero, and the basal slope effect on the solid phase also vanishes. In this limiting case, the only remaining solid force is due to gravity, and thus the force associated with buoyancy. Under these conditions of hydrodynamics support of the by the fluid, the debris mass is fully fluidized (or lubrication) and moves very economically, promoting long travel distances. Compared to buoyant flow, the neutrally buoyant flow shows completely different behaviour. For the latter case, the solid and fluid phases move together, the debris bulk mass is fluidized, the front moves substantially farther, the tail lags behind, and the overall flow height is also reduced. When , the flow does not experience any buoyancy effect. Then the effective frictional shear stress for the solid phase is that of pure granular flow. In this case the force due to the pressure gradient is altered, the drag is high and the effect of the virtual mass disappears in the solid momentum. All this leads to slowing down the motion.
Before a storm that can potentially nucleate debris flows, forecasting frameworks can often quantify the likelihood that a debris flow might occur in a watershed;Staley, D.M., Negri, J.A., Kean, J.W., Laber, J.L., Tillery, A.C. and Youberg, A.M., 2017. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, pp.149-162. however, it remains challenging to predict the amount of sediment mobilized and therefore, the total size of debris flows that may nucleate for a given storm, and whether or not debris basins will have the capacity to protect downstream communities. These challenges make debris flows particularly dangerous to mountain front communities.
|
|